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ABSTRACT 

 
To enrich the viewing experience of baseball games and provide 
some clues for enhancing pitcher’s performance, we propose a 
Kalman filter-based approach to track ball trajectory from single-
view pitching sequences. Without setting extraordinary 
equipments in stadiums or other sensing instruments, this approach 
robustly extracts ball trajectory for pitching sequences captured 
from TV channels or downloaded from the Internet. To validate 
the detected ball trajectories, we investigate the characteristics of 
ball trajectories on the basis of a baseball physical model. The 
effectiveness of ball trajectory extraction and ball position 
detection are presented.  
 

1. INTRODUCTION 
 
Many techniques based on color, motion, caption [1], and audio 
information [2] have been proposed for sports video analysis. Most 
approaches focus on detecting predefined events in games and then 
generate game summarization or abstraction. On the other hand, 
some implicit game statistics, which may be helpful in tactic 
analysis or improving athlete’s performance, have drawn only little 
attention. Examples of this information include possession time in 
soccer games and various pitches in baseball games.  

Recently, approaches based on ball trajectory have been 
proposed to facilitate such kind of implicit game status extraction. 
Yu et al. [3] detect and track ball trajectory in soccer games to 
perform possession and play-break structure analysis. For baseball 
games, the main scope of this paper, the well-known K Zone 
system [4] is to track pitched ball trajectory. Two cameras 
(locating high above home plate and the first base) and three 
subsystems are equipped to achieve real-time ball tracking in 
broadcasting baseball games. More specifically, Theobalt [5] et al. 
track position, velocity, rotation axis, and spin of the pitched ball 
along its trajectory with low-cost commodity.  

These approaches are only applied to some specific games or 
should be equipped with special tracking instruments. Nowadays, 
tremendous pitching video sequences can be accessed on the 
Internet [6], while such entertaining functionality is not provided. 
Techniques that automatically extract ball trajectory without 
specific equipments are therefore worth developing to enrich the 
experience of watching baseball games. In this paper, we focus on 
extracting ball trajectory from single-view pitching video 
sequences. We apply a Kalman filter-based approach [7] to 
perform ball tracking and extract trajectories. This approach 
robustly provides good tracking performance even some real ball 

candidates are missing in some frames. The detected trajectory is 
further validated by the baseball physical model given in [8].  

The rest of this paper is organized as follows. Section 2 gives 
the system overview. Section 3 presents the proposed ball 
detection process. Section 4 addresses the trajectory process and 
the physics-based trajectory validation. Performance evaluation is 
given in Section 5, and Section 6 concludes this paper.  
 

2. SYSTEM OVERVIEW 
 
Figure 1 illustrates the proposed baseball trajectory detection 
process. Given a pitching video sequence, ball candidates in each 
frame are first detected by checking color, position, size, and shape 
information. Several ball candidates may be extracted from one 
frame, while the real ball object may be misdetected because the 
ball is occluded by players or is merged into white regions. 
Therefore, the trajectory process is applied to track the ball in 
video frames and generate trajectory candidates. This process deals 
with ball tracking, trajectory interpolation and extension. For a 
pitching sequence, only one trajectory is valid after checking 
physical characteristics of the detected trajectory candidates. The 
planar ball position of each frame can then be determined. The 
proposed approach works well for different types of pitching 
conditions (games in MLB vs. CPBL [9] and righty vs. lefty).  
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Figure 1. The system flowchart.  

 
3. BALL CANDIDATE DETECTION 

 
Given a pitching video sequences, we first detect white 
background regions that always remain white in the whole 
sequence (usually 10~18 frames in 30-fps video sequences). For 
each video frame, the pixels in white background regions are 
neglected, and white objects are viewed as ball candidates if they 
meet several constraints, including color, position, size, and shape. 
Figure 2 illustrates the process of ball candidate detection.  



1) Color filter: The color of a baseball is similar to white even in 
different broadcasting situations. Therefore, the objects whose 
color is not close to white are filtered out. The object is close 
to white if all its color components in RGB channels are larger 
than 150.  

2) Position filter: The ball always flies within a specific region, 
either in different broadcasting styles, right-hander or left-
hander. We discard all objects higher than (1/5)*(frame height) 
and lower than (5/4)*(frame height).  

3) Size filter: Although the size of a baseball may be different in 
various game broadcasts, it falls within a specific range. This 
filter sieves out pixel-size white noises or massive objects 
caused by the player’s white uniform or advertisement boards. 
In our experiments, the resolution of video frames is 352 ╳ 240 
pixels, and reasonable planar ball size ranges from 2 to 10 
pixels.  

4) Shape filter: Although the high-speed flying ball is not a 
perfect circle on screen, it would not deform too drastically. 
Therefore, objects that are far from circle are filtered out. An 
object’s radius r is defined as the greater value among its width 
and height, and it is viewed as a circle if the ratio of object 
area to 2rπ  is larger than 0.3.  
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Figure 2. The flowchart for ball candidate detection.  

 
After applying these filtering processes, reasonable ball-like 

objects are detected. However, many of them are noises or none of 
them is the real ball. The trajectory process described in the next 
section tracks these ball candidates and finds the optimal trajectory.  

 
4. TRAJECTORY PROCESS 

 
The trajectory process consists of three steps. We first connect 
neighboring ball candidates in adjacent frames to form trajectory 
segments. If the real ball is completely detected in the whole 
pitching sequences, we can feel free to say that one of these 
trajectory segments is the true ball trajectory. However, ball is 
often misdetected because of occlusion, merging, or deformation, 
and the trajectory is cut into short segments. Therefore, the process 
of trajectory candidates generation tackles with constructing 
complete trajectories. Furthermore, an elaborate trajectory 
validation process is developed to filter out abnormal (in terms of 
baseball physics) trajectories derived from detection noises.  
 
4.1. Trajectory Segments Generation 
 
The main challenge of trajectory generation is that the ball often 
overlaps with white objects and is not detected (filtered out) in the 
process of ball candidate generation. Therefore, the developed 

trajectory process should estimate the missing ball positions and 
generates reasonable trajectory candidates. In this work, we apply 
a Kalman filter-based approach to track the ball positions.  

In general, the Kalman filter describes a system as:  
k k k-1 k= +x A x w ,                                                                 (1) 
k k kz = H x + vk ,                                                                    (2) 

where xk is the state vector (representing the vector of 
estimated ball position at the kth frame), Ak is the system evolution 
matrix, and wk is the system noise vector. zk is the vector of 
measurements (positions of ball candidates), Hk is the unit array, 
and vk is the measure noise vector.  

We first find a trajectory seed to start the process of Kalman 
filtering. A trajectory seed is a pair of ball candidates in two 
adjacent frames and the Euclidean distance between them is less 
than a given threshold. In this work, two ball candidates are 
viewed as a seed if both their vertical and horizontal distances are 
less than 15 pixels.  

After using the found seed to estimate the system evolution 
matrix Ak, we grow the trajectory forward along the time axis. 
Suppose that an existing trajectory ends at the ith frame, the ball 
position in the (i+1)-th frame is estimated by the Kalman filter. If 
there are ball candidates close to the estimated position, the 
trajectory grows and we update the parameters of Kalman filter. 
The classical predictor-corrector process [7] repeats until all video 
frames are analyzed or no close candidates can be found as the 
basis for trajectory growing.  

Figure 3 shows an example of the detected trajectory 
segments. The distance at y-axis denotes the Euclidean distance 
between ball candidates and the left-top corner of the frame. Note 
that the true ball trajectory may not exist at all frames. Thus, we 
have to concatenate these trajectory segments in a reasonable way 
and construct trajectory candidates which last for the whole 
pitching duration.  

 
Figure 3. An example of detected trajectory segments.  

 
4.2. Trajectory Candidates Generation 
 
To generate trajectory candidates from the found trajectory 
segments, a process that consists of three stages is developed.  
1) Find stage: For each trajectory segment Ti, which ends at the 

ei-th frame, find the trajectory segments Tj, which starts before 
the (ei+5)-th frame (assume it starts at the sj-th frame) and the 
distance between their end points at the ei-th frame and the sj-
th frame is less than a threshold.  

2) Connect stage: If Ti is longer, use a polynomial to fit Ti and 
estimate its ball position at the sj-th frame. If the distance 
between the estimated ball position and Tj’s ball candidates is 



less than a threshold, connect them. Otherwise, ignore this 
segment pair. Similar process is performed if Tj is longer.  

3) Extend stage: If the connected trajectory segments are longer 
than (L-4) frames and shorter than L frames, where L is the 
number of total frames of a pitch, a polynomial is used to fit 
this trajectory and estimate the rest of this trajectory.  
The trajectory generation process may generate many 

trajectory candidates that are drastically different. However, only 
one of them is the true ball trajectory. The following section 
describes how we find the optimal trajectory from these trajectory 
candidates.  
 
4.3. Physics-based Trajectory Validation 
 
4.3.1. Physical Model of Ball Trajectory 
 
There have been many literatures on aerodynamics of baseball, by 
which we can confirm the reasonability of the generated trajectory 
candidates. According to the physics of baseball [8], the trajectory 
of a baseball can be roughly determined by velocity, rotation axis, 
and spin rate. By adjusting these parameters, we simulate 
trajectories of a pitching baseball and characterize its trajectory 
vectors. The positions of a baseball in x (right of batter), y (up 
from batter), and z (towards batter) directions can be formulated as:  
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where xt is the horizontal position at time t, vx(t) is the 
velocity component in horizontal direction, and ax(t) is the 
corresponding acceleration. Related to the releasing angle and 
beginning velocity v0, the x, y, z components of velocity are:  
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where aimx (aimy) is the included angle between z-axis and 
the projection of releasing ball on xz (yz) plane, as shown in Figure 
4.  
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Figure 4. Velocity components of the releasing baseball.  
The corresponding evolution of velocity becomes:  
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and the corresponding evolution of acceleration is:  
0( ) ( ) ( ),x y za t B s v t fv v v t= × × − × × x

y

 

0( ) ( ) ( ),y x za t B s v t G fv v v t= × × − − × ×                               (6) 

( ) 0( ) ( ) ( ) ( ),z y x x ya t B s v t s v t fv v v t= × × − × − × × z
 

where B and fv are coefficients of spin and air friction, G is 
the acceleration of gravity, sx is the spin rate with rotation axis x. 
In each direction, the evolution of acceleration is affected by the 
force evoked by spin and the drag force. With these formulas, 
given the beginning velocity v0, spin rate in x and y directions (sx 
and sy), we can simulate the ball trajectories in different conditions.  

To find the criterion of valid ball trajectories, we simulate 
trajectories with different parameter sets, which include almost all 
possible parameters a pitcher can evoke. Table 1 shows the ranges 
of simulation parameters. Note that in physics books the 
orientation of rotation axis should also be considered. However, in 
our experiments, the difference of rotation orientation affects 
slightly and can be neglected.  

 
Table 1. Ranges of simulation parameters 

Parameters Range 
v0 60, 70, 80, 90, 100 (mph) 
sx and sy -600, -500, …, 400, 500, 600 (rad/s) 
aimx and aimy -5°, -4°, …, 3°, 4°, 5° 

 
For each simulated trajectory, we compute the included angle 

of two adjacent flying vectors:  
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where ( )1 1, ,i i i i i i i 1x x y y z z− −= − − −v − .  
After simulating all possible trajectories, the included angles 

in various conditions are gathered to be the reference for trajectory 
validation. Note that we only simulate overhand pitches, while the 
statistics of underhand pitches may not vary drastically.  Figure 5 
shows the angle histogram of two adjacent 3-dimensional (3-D) 
vectors. In this histogram, we can see that all legal included angles 
fall into the range less than 1.2°. This characteristic forms the 
limitation of a legal trajectory.  

 
Figure 5. The angle histogram of trajectory vectors. 

 
4.3.2. Trajectory Validation via Physical Limitation 
 
With the aid of physical limitation derived from trajectory 
simulation, we can filter out abnormal trajectory candidates. 
However, what we extract from single-view video sequences are 2-



D ball trajectories, in terms of pixels. We should estimate the 
depths (ball positions at the z-axis) so that the constraints 
described above can be applied. In this work, we estimate the 
proportion of vertical movement (movement at the y-axis) to depth 
in the simulation process. After trajectory simulation, it is 
estimated as 0.0558. This ratio matches the naïve estimation in the 
real world. If the height of a pitcher plus mound is roughly 2 
meters, the average vertical movement of various pitches is about 
1 meter. This ratio can be calculated by dividing average vertical 
movement with the distance from the mound to the home plate 
(18.44 meters). On the other hand, the average vertical movement 
in our dataset is estimated as 38.1736 pixels. Proportionally, the 
depth of the detected 2-D trajectories is estimated as 
38.1736/0.0558 ≈ 684 pixels. The depth of each ball candidate is 
then obtained from the estimated depth divided by the frame 
number of this sequence. By this way, we not only extract planar 
trajectory from single-view sequences, but also estimate its 3D 
model automatically.  

For each detected 3-D trajectory candidate, the included angle 
between two adjacent vectors is computed. A trajectory candidate 
is viewed as abnormal if one of the included angles of its vectors is 
larger than 5°. This threshold is set according to the limitation 
derived from Figure 5, and is loosed to endure noises caused by 
detection or tacking errors.  
 

5. EVALUATION 
 
We use 38 pitching sequences, including fastball, splitter, slider, 
and curveball, for evaluation. The ground truth of ball position 
(center of the ball) is defined manually. The distance, in terms of 
pixels, between ground truth and the estimated ball positions is 
calculated. Table 2 shows the average and maximum pixel 
differences in four types of pitching. Note that we use 352 ╳ 240 
pixels MPEG-1 bitstreams, and the size of planar ball usually 
ranges from 4 ╳ 4 to 6 ╳ 6 pixels. We can see very good ball 
detection accuracy in Table 2. The reported differences are 
relatively small to ball size and can be viewed noises derived from 
defining ground truth manually. Moreover, assume that the error 
from human-defining ground truth is consistent in different types 
of pitches, the values in Table 2 also show some interesting results. 
Fastball goes straight and is relatively easy to be estimated, while 
curveball turns drastically and raises the difficulty of accurate 
tracking and detection. Splitter and slider curve between fastball 
and curveball and show medium differences.  
 

Table 2. Detection performance in terms of pixel differences 
Pitch type Avg. pixel diff. Max. pixel diff. 
Fastball (18 seq.) 0.79 1.73 
Splitter (5 seq.) 1.02 1.91 
Slider (9 seq.) 1.28 2.48 
Curveball (6 seq.) 1.28 2.71 
 

Figure 6 shows a detection result that juxtaposes the real ball 
trajectory and the detected one. More results can be seen at 
http://www.cmlab.csie.ntu.edu.tw/~wtchu/baseball/trajectory.html.  

 
6. CONCLUSION 

 
We develop a system to automatically extract baseball trajectory 
from single-view pitch video sequences. By checking color, 

position, size, and shape information, ball candidates in each video 
frame can be detected. A Kalman filter-based approach is applied 
to track the ball position and generate trajectory segments. On the 
basis of trajectory segments, a process is designed to generate 
trajectory candidates, which last for the whole pitching duration. 
We evaluate the reasonability of each trajectory and select the best 
one to obtain the final trajectory result based on a baseball physical 
model. The experimental results show the effectiveness of this 
approach. In the future, the results of ball trajectory will be applied 
to either entertainment or game analysis.   
 

(a) (b)(a) (b)  
Figure 6. Comparison of (a) the true ball trajectory and (b) the 

extracted trajectory.  
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